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Abstract 

Analysis of Ultra-relativistic Charged Particle Beam 

and Stretched Wire Measurement Interactions 

with Cylindrically Symmetric Structures 

c. E. Deibele 

Under the supervision of Professor J. Beyer 

At the University of Wisconsin-Madison 

v 

The beam impedance and wakefield are quantities which 

describe the stability of charged particles in their 

trajectory within an accelerator. The stretched wire 

measurement technique is a method which estimates the beam 

impedance and wakefield. Definitions for the beam impedance, 

the wakefield, and the stretched wire measurement are 

presented. A pillbox resonator with circular beampipes is 

studied for its relatively simple profile and mode structure. 

Theoretical predictions and measurement data are presented 

for the interaction of various charged particle beams and 

center conductor geometries between the cavity and beampipe. 

Time domain predictions for the stretched wire measurement 

and wakefield are presented and are shown to be a linear 

interaction. 
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I. Overview 

A. Introduction 

Understanding the interaction of an ultra-relativistic 

particle bunch with its environment is crucial for designing 

a stable accelerator. Several articles have been written 

which describe this interaction in detail. Moreover, other 

papers have been written which describe a method whereby one 

may simulate this ultra-relativistic particle beam with a 

stretched wire. The goals of this dissertation are: 1) to 
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lay some groundwork for a method for both solving and 

understanding the interaction of a charged particle beam with 

its environment, and 2) to compare the solutions of earlier 

papers which analyzed the stretched wire measurement (SWM) 

with theoretical solutions. 

The results of the research are presented by first 

defining the wakefield l a particular problem faced by high 

energy scientists. An overview of the methods employed to 

solve particular wakefield phenomena will then be 

demonstrated l followed by the discussion of a new general 

integral equation which solves the wakefield problem. This 

integral equation governs the behavior of a particular 

geometry for both a high-energy charged particle beam and a 

wire simulation of the particle beam with its environment. A 

simple Fourier series technique is introduced which is shown 

to solve the integral equation, and the theoretical result is 



compared to physical measurements. Finally, a comparison of 

results between a high-energy charged particle beam and a 

stretched wire measurement with a 50-Q coupling transmission 

line is presented. 
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The particle accelerator has become a tool for many 

disciplines of the sciences. As the study of particle 

accelerators grows, the understanding of the complex 

phenomena in the machine grows as well. A major limitation 

in the modern accelerator is the maximum level of current at 

which the machine can operate. Increasing the current in the 

machine typically raises the overall output of the machine. 

This is evident in high-energy accelerators where raising the 

current levels results in increasing the rate of collisions. 

In low-energy machines raising the current is helpful since 

scientific output is often proportional to current. 

The accelerator often has practical limitations on the 

level of current it can reach because of inherent instability 

of the particles In their trajectory along the beampipe. 

Instabilities include disruptive forces from the interactions 

of the beam with its environment. The focus of many 

researchers has been to describe a way to predict the 

interactions of the particle bunch with its environment. 

This is accomplished with data from wakefield and beam 

impedance measurements. 

The terms wakefield and beam impedance are sometimes 
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used interchangeably Slnce the wakefield 1S the inverse 

Fourier transform of the beam impedance. Both of these 

quantities are used in dynamic equations for predicting beam 

stability. The formal derivation of the beam impedance from 

the wakefield is shown in Appendix A. 

Many techniques are used to estimate the beam impedance. 

One technique which is commonly used is called the stretched 

wire measurement. The stretched wire measurement uses 

electromagnetic energy guided on a wire to simulate the 

fields from a relativistic beam of charges. Other techniques 

exist which measure the wakefield directly. Each measurement 

technique uses several approximations and therefore is prone 

to error when the measurement is not interpreted correctly. 

B. Definitions 

A physical description of the wakefield and beam 

impedance will be presented first, immediately followed by a 

mathematical description of these quantities. Before this 

can be accomplished however, the 

notion of voltage must be 

presented for a cavity 

resonator. 

Figure 1-1 shows a profile 

of a simple beampipe structure. 

A section of beampipe leads into 

a simple pillbox resonator which 

accelerating cavity 

rf energy input 

beampipe 
Figure 1-1. Coupling loop 
excites modes of the cavity 
with azimuthal electric field. 
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leads into another section of beampipe. The pillbox 

resonator has a coupling loop which is oriented to excite 

transverse magnetic (TM) modes of the resonator and thus 

produce an azimuthal electric field. The points a and b lie 

on the front and back walls of the resonator and are 

positioned on the beam trajectory which is along the center 

line of the resonator. With this geometry, the coupling loop 

in Fig. 1-1 has the capability to supply energy to the beam. 

This is easily seen using the simple force and energy 

relations in Eq. 1-1: 

.. AE= (Energy) I z=b - (Energy) I z=a (1-1) 

b b 

=Jf·dI =J QE·dz. 
a a 

The accelerating voltage lS defined by Eq. 1-2: 

b 

V ~JE.Z dz. accelerate (1-2) 
a 

Note that the accelerating voltage is a time harmonic 

quantity, and it is directly proportional to the energy gain 

of a charge as it passes through the cavity along the center 

of the beampipe. 

The wakefield is a quantity easily described 

pictorially. In each of the following figures, the geometry 



is the same as Fig. 1-1 

without the rf input. 

Envisage a point charge 

moving along the beampipe 

where it encounters a 

discontinuity similar to 

Fig. 1-2. The lines of 

electric field are 

shown to be extending 

outward radially as is 

predicted. As the charge 

progresses to the right in 

Fig. 1-3, it couples energy 

into the cavity and the 

boundary conditions of the 

cavity dictate a field 

picture as shown. These 

fields can exist in the 

cavity long after the 

particle leaves the 

resonator if the charge 

couples energy into a high 

Q mode of the cavity. 

Figure 1-4 illustrates a 

Figure 1-2. A point charge 
moving to the right before 
encountering beam pipe 
discontinuity. 
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Figure 1-3. The point charge 
encounters the discontinuity and 
couples energy into the cavity. 

Figure 1-4. The point charge 
coupled energy into a high Q 
mode of the cavity leaving a 
wakefield along the beam's 
trajectory. 

charge coupled to a high Q mode of the cavity, and either the 
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wall losses or the coupled propagating beampipe modes have 

not yet dissipated the energy supplied by the beam. This 

instantaneous field caused by a point charge is called the 

wakefield of the cavity. If another charge enters a cavity 

excited with a significant wakefield from an earlier charge 

or charges, the wakefield could make the latter charge 

trajectory become unstable and cause it to be lost to the 

machine. The wakefield shares the same properties as the 

accelerating voltage defined in Eq. 1-2 except the source of 

the accelerating voltage is typically considered to be the rf 

input while the source of the wakefield is a moving bunched 

charge. 

The wakefield appears to be a rather abstract quantity 

but is easily defined with the help of some introductory 

linear system theory. 

Envision a system, 

described in Fig. 1-5, 
x(t) ....... ·--Lu g(t~ ~ u - y(t) 

whose input signal is x(t) 

and whose impulse response 

is g(t). The function g(t) 

Figure 1-5. A linear time 
invariant (LTI) system. 

represents a linear time invariant (LTI) system and therefore 

y(t) is easily predicted by Eq. 1-3, a convolution integral: 

y ( t) = J x (1:") g ( t -1:") d1:" • (1-3) 
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Note also that if x(t) is the Dirac impulse function, o(t), 

yet) is then simply the impulse response get) . 

Inspection of Eq. 1-3 shows that if get) is a 

complicated function, yet) could be computationally difficult 

to predict. Taking the Fourier transform of Eq. 1-3 would 

change the problem into studying the frequency domain 

response of the system. Typically speaking, the Fourier 

transform can simplify some integral and differential 

equations which govern system behavior and give another 

perspective in solving for 

the response of a system. 

Figure 1-6 is the same 

system as in Fig. 1-5 

except that each signal In 
Figure 1-6. The Fourier­
transformed system of Fig. 1-5. 

Fig. 1-6 is the Fourier transform of the signal In Fig. 1-5. 

The function Yew) is easily computed since it is not defined 

by a convolution, as depicted in Eq. 1-3, but simply defined 

by mUltiplication as shown in Eq. 1-4: 

Yew) =x(w) G(w) . (1-4) 

A thorough description of these quantities can be found In 

many introductory linear system theory texts [1]. G(w) will 

be defined as the beam impedance if X(w) and Yew) have the 

proper definitions which follow. 

The connection to beam impedance lies in applying a few 

definitions. Define yet) to be the wakefield voltage of an 
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arbitrary current source: 

b 

Y ( t) ~ J E· zdz , 
a 

where E is the instantaneous electric field from a charge 

passing through an arbitrary structure. Consistent with the 

definitions in Fig. 1-5, define x(t) to be the current in the 

machine which causes the wakefield y(t) : 

x (t) ~i (t) I 

where x(t) is an impulse of current. The system response 

y(t) is easily predicted with the convolution integral for 

this particular source. The result is summarized below: 

00 00 

y ( t) = J g ( t -'t') X ('t') d't' = J g ( t -'t') () ('t') d't' =g ( t) 

This equation illustrates the wakefield voltage is the 

impulse response to the system in Fig. 1-3. Measuring the 

wakefield voltage from an impulse of current yields g(t), the 

impulse response. From linear system theory, the behavior of 

the impulse response g(t) uniquely determines the wakefield 

voltage for any excitation current x(t) . 

Now consider the Fourier-transformed quantities 

y ( w) =Sf{y ( t) } 

X(w) =Sf{x( t)}· 
G (w) =Sf{g (t) } 
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Using the same definitions for each quantity presented 

earlier, it is clear from Eq. 1-2 that the S1 unit of G(w) lS 

the ohm, and G(w) is an impedance-type quantity which 

determines the response of any steady state current 

distribution. G(w) is defined to be the beam impedance, and 

Y(W) is defined to be the beam voltage. 

C. General Coupling Theory 

A general model [2] for coupling into a cavity is 

depicted in Fig. 1-7. The ideal turns ratio, a function of 

frequency, is a unique term for each mode and describes the 

level of coupling to individual cavity modes. 

Cavity Circuit 
Parameters 

Ideal Transformers a: 1 

Lleakage 

f 

L magnetize 

The inductors 

Figure 1-7. General coupling circuit model for coupling 
into a multiple-moded cavity. 
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Lmaanetize and Lleakage describe the self inductance of the 

coupling from either the charged particle beam or coupling 

wire into the cavity. The cavity parameters, C, Lcavi~' and R 

are found by first determining a set of circuit terminals 

which couple to a particular cavity mode. Next, a volume 

integration of the electric and magnetic fields and a surface 

integration of the magnetic field uniquely determine C, 

Lcavi~' and R, respectively. 

The circuit of Fig. 1-7 may be simplified when the 

coupling to a particular set of modes is strong. Strong 

coupling implies that the leakage inductor may be neglected. 

Since accelerating cavities are designed to couple strongly 

to at least one 

mode, the assumption 

that Lleakage=O is of 

practical 

importance. The 

circuit ln Fig. 1-7, 

subject to the 

assumption of strong 

coupling, results in 

the circuit of Fig. 

1-8. 

Lcavity c R 

L magnetize ~ L beam 

Figure 1-8. Equivalent circuit to Fig. 
1-7 when the coupling to a particular 
mode is strong. 



D. Review of Past Work 

The wakefield is a phenomenon whose effects were known 

and observable long before they were directly measurable. 
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One such facility which measured the wakefield was the 

Advanced Accelerator Test Facility (AATF) at Argonne National 

Laboratory (ANL). The AATF used a series of two short 

relativistic pulses of electric charge to measure the 

wakefield of the device under test (DUT). A high-energy 

excitation pulse of -21 MeV was used to excite the wakefield 

in the DUT. The witness pulse, of lower energy (-15 MeV) and 

intensity for increased sensitivity, was affected by the 

resulting wake electric field from the excitation pulse after 

it passed through the DUT. The time between the two pulses 

was controlled and the difference in energy of the second 

pulse was recorded as a function of the time difference 

between the pulses. The energy difference of the witness 

pulse from before the discontinuity to after the 

discontinuity was theorized to be directly proportional to 

the wakefield of the DUT. 

The measurement of the wakefield for a particular 

geometry is a complicated, expensive, and time-consuming 

procedure. It requires the following: 

~ A sufficiently strong disturbance (-10 keV) is required 

in the DUT for signal-to-noise (SIN) arguments. This 

requirement may demand a change in the desired 
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experiment in order to have a DUT which will induce a 

wakefield of sufficient magnitude. This necessary 

change adds variables and assumptions to the experiment. 

For example, a simple assumption made when using the 

AATF to measure a cavity whose wakefield is below the 

sensitivity of the AATF is; if one cavity produces a 

wakefield of magnitude M, then N cavities produce a 

wakefield of magnitude MN. 

The self-interaction of the witness pulse with the DUT 

is assumed to be negligible. Since both the excitation 

and witness pulses are relativistic, the physics demands 

that the witness pulse interact with the DUT in the same 

manner as the excitation pulse. Choosing the correct 

energy and intensity of the witness bunch, relative to 

the excitation bunch, was a primary design consideration 

for the AATF. 

A complicated structure and control system is required 

to control the time between the two pulses. This adds 

inherent design problems for particular time 

differences. The AATF, for example, had difficulty with 

the time difference ~t=O since ~t=O implies that both 

pulses are at the exact time and position as they pass 

through the DUT. 

The DUT must be adapted to the geometrical standards 

that the wakefield accelerator demands. This includes 



13 

changing dimensions of irises or beampipes from those of 

the DUT's original application to the beampipe or vacuum 

system dimensions required by the wakefield accelerator. 

These required changes may also change the loading on 

resonances in the DUT. Since the resonant frequencies 

of the DUT are dependent on the beampipe loading, the 

measured resonant frequencies of the DUT will be in 

error. 

For a variety of reasons another method for estimating 

the wakefield was sought. One of the first papers addressing 

concerns of estimating the wakefield was written in 1974 by 

M. Sands and J. Rees [3], both from the Stanford Linear 

Accelerator Center (SLAC). Sands and Rees proposed using a 

wire to simulate a relativistic beam and gave estimates for 

regimes of validity for estimating the loss parameter. The 

technique of using a Wlre to simulate a relativistic beam is 

called the stretched Wlre measurement. 

The stretched wire measurement gained popularity in 

experimental practice over the next ten years, and from 1985 

to 1990 many theoretical papers were written for predicting 

the field structure for arbitrary discontinuities in the 

beampipe. Furthermore, experiments have shown that the 

stretched Wlre measurement has validity. Use of the 

stretched wire measurement to estimate the beam impedance can 

be desirable for several reasons. First, this type of 
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measurement can be performed relatively inexpensively with a 

highly sensitive network analyzer. The sensitivity of many 

commercially-available network analyzers is high enough such 

that a change in the experiment (i.e., adding cavities) is 

not necessary. Next, vacuum systems and problems associated 

with inserting the device into a wakefield accelerator are 

not encountered since the measurement is performed in air. 

Finally, the experiment can be effortlessly repeated several 

times if, as is usual, unforeseen experimental difficulties 

persist. 

In 1985 H. Henke [4] from CERN solved the problem of a 

relativistic point charge moving along a circular beampipe 

which encounters either a pillbox cavity (see Fig. 1-9) or an 

infinite circular parallel plate waveguide (in Fig. 1-9, 

b-7=). The method of solution involved complex analysis to 

represent the magnetic field as a sum of all the waveguide 

modes in the beampipe, Hankel transforms of Maxwell's 

equations in r, the radial coordinate, and Fourier transforms 

in z. The magnetic fields were matched at the beampipe, and 

the solution was posed in the form of a Fourier series of the 

cavity modes. Henke also predicted the frequency response 

for the interaction of a Gaussian beam with the beam 

impedance and consequently he predicted the wakefield. 

R. Gluckstern [5] expanded on Henke's work by expressing 
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the result for a general discontinuity in the form of an 

integral equation. His general method of solving a 

relativistic charge followed the same form as Henke's, but 

Gluckstern chose to solve Maxwell's equations without 

exploiting the Hankel transform that Henke used in his 

analysis. Gluckstern's resulting integral equation is 

g 

JdZIF(z/) [Kp(lz-Z/1) +Kc(Z,Z/)] =ie-ikZ
, 

o 

where F(z) is the unknown function which solves Eq. 1-5. 

F(z') is defined explicitly by 

z=o z=g 

I \ 
i 

x 

2r 0 

·r 

y 

(1-5) 

Figure 1-9. Consider an infinite structure leading into and 
out of a pillbox cavity. 



Kp(lz-z'l) is defined as the pipe kernel and lS equal to 

-ibslz-z'l 

K (Iz-z/I) = i21tI: _e __ 
a

_ 
p a s=l b

s 

where b s is the wave number in z 

j 2< (ka) 2 
s 

j 2> (ka) 2' 
s 
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(1-6) 

and the js's are the solutions to Jo(js)=O. The complex 

number i=j=I. Kc(z,z') is the cavity kernel and is equal to 

(1-7) 

where h1(r,z) is the normalized magnetic field intensity for 

the lth mode satisfying the perfect conducting boundaries 

defined by the square torus region {z: O~z~g; r: a~r~b} 

depicted in Fig. 1-9. The normalization of the magnetic 

field intensity is 

using this normalization produces a symmetry In Maxwell's 



equations: 

w] 
where kl = - . Dimensional analysis shows that Ii] (r I z) has 

c 
the same units as the electric field. Additionally, Ii](r,z) 

and E](r,z) have the same normalization 

f E . E d-c =f Ii . Ii d-c = f> • 
cavity ] m cavity ] m ],m 

Finally, Gluckstern estimated the solution to his 

integral equation for high frequencies by modifying the 
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kernels into their non-oscillatory components. The infinite 

summations of the non-oscillatory parts of the kernels can 

then be changed into integrations which are easily evaluated. 

In 1989 Gluckstern and Li [6] solved the problem of 

placing a pulse of current on a coaxial wire of radius r=ro 

inside a pillbox cavity (see Fig. 1-9). This particular 

geometry is of special interest since it closely resembles a 

structure frequently used for estimating the beam impedance. 

Gluckstern and Li represent their solution in the same form 

as the integral equation in Eq. 1-5 where Kc ' the cavity 

kernel, is the same as in the problem without the center 

conductor, while Kp, the pipe kernel, has an obvious 

difference due to a different beampipe geometry and is 

changed to 

! i21t i" IX 8 
K (Iz-z I) =--L...t -e 

p a 8=0 E 
8 

-i£)z-z'l 
a (1-8) 
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where the as's are defined by 

8:2:1 1 

1 a =-----
o a 

21n(-) 
(1-9) 

ro 

and the is's are the solutions to 

r r 
Yo (i ) J o (i --=:) -Jo (i ) Yo (i --=:) =0 

S Sa S Sa 
8:2:1. 

i o£!' 0 

The axial wave numbers are described similarly by 

V (ka) 2-i 2 
E = S 

S 'V'2 (k )2 -~ ~ - a 
S 

i 2< (ka) 2 
S 

i 2> (ka) 2 
S 

Gluckstern and Li used the same techniques to solve the 

integral equation as Gluckstern used when he solved the 

problem of a relativistic charge encountering a pillbox 

cavity, The final conclusion from Gluckstern and Li concerns 

the similarity between the transmission coefficient T(k) and 

the beam impedance Z(k). They concluded that there exists a 

similarity between 

Z(k) 1-T(k) 
---"'----
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for large k and small obstacles. 

Gluckstern and Li found the transmission coefficient by 

first finding Ez(r=a,z). They then found the scattered 

magnetic field through the relationship 

ZI . Joo . 
Z H (r=a z) =~e-lkz-ik A(q) e-lqZJ(q) dq. 

o <I> I 2TIa 

The function A(q) is defined by 

and 

1 g 
A(q) ~-Jf(z) eiqZdz 

2TI 
o 

(1-10) 

The integration of A(q) in Eq. 1-10 is performed by complex 

analysis. The s=O terms relate to the scattered transmitted 

and reflected magnetic field. The transmitted magnetic field 

is 

H<I> (r=a, z, w) = 

. Z[ 4TI2IXOA (~) 1 -lW- C 
__ 0_ eel + _____ _ 
2TIa Z I 

o 0 

2TIIXo w iW.!. 
--A(--) e c 

z~g 

I 

z<O 
a c 



They found the transmission coefficient by substituting the 

expression for f(z) into A(~) 
c 

2na g iCil.!. 
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T (w) =1 + 0 Jf (z) e C dz. 
ZI 

(1-11) 
o 0 0 

In 1990 Heifets and Kheifets [7] from SLAC wrote a 

thorough theoretical paper discussing different iterative 

schemes for finding the beam impedance. Each iterative 

method is applied to a relativistic point charge interacting 

with a series of structures such as cavities and steps. They 

used the same technique of field matching to find the beam 

interactions and discussed methods of estimating high-order 

terms. 

The final general ¢-independent beampipe, cavity, and 

beam distribution integral equation which will be used 

throughout this dissertation is of the form 

(1-12) 

This equation follows the exact formalism presented by 

Gluckstern et al. and only includes a minor difference in the 

form of the source term. Using this particular form of the 

integral equation will aid in studying realistic and 

practical geometries of stiff charged particle beams. The 

function f(z) is the unknown function where f(z)=Ez(r=a,z). 
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E. Goals 

It is the purpose of this research to further 

investigate the stretched wire measurement and to present 

theoretical and experimental conclusions. To date only TM 

modes were analyzed and this dissertation will include all TM 

and transverse electromagnetic (TEM) cavity modes. With the 

aid of linear system theory, the derivation of a new integral 

equation will be presented. Furthermore, using the 

assumption of a particular source distribution, a different 

method for solving the problem of the interaction of the beam 

with its environment will be shown using a complex Fourier 

series approximation for E(r=a/z)·z. with the complex 

Fourier series approximation, the effects of the coupling 

structure, namely the beampipe in the case of the physical 

particle beam or the wire in the case of the stretched wire 

measurement, can be extracted. Once the effects of the 

coupling structure are known, an objective comparative 

analysis between the effects can be made. Since the goal of 

the stretched wire measurement is to simulate a charged 

particle beam, an analysis between similar and dissimilar 

coupling structures should show where a regime of validity 

exists and for which frequencies the stretched wire 

measurement will adequately simulate an ultra-relativistic 

charged particle beam. With the Fourier series 

approximation, the theoretical solution of the stretched wire 



measurement and wakefield measurement can finally be easily 

shown to converge to similar solutions. 
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II. Specific Source Considerations 

A. Introduction 

One technique used to estimate the beam impedance is the 

stretched wire measurement. This technique is used because 

the source fields of an ultra-relativistic bunch of charge 

are similar to an impulse of current on a center conductor. 

A review of these sources and their fields along with two 

other source geometries will be introduced. 

Consider the geometry depicted in Fig. 1-9. Assume that 

the current source J(r,t)=J(r,z,t) or equivalently, assume 

that the source is independent of ~ and all 
a 
a~ =0. Maxwell's 

equations, which are repeated below, must be satisfied 

everywhere in the beampipe and cavity regions. 

- a---> ,\?xE=-J.L-H 
at 

-+ a-+--. 
,\?xH=e-E+J 

at 

B. Ultra-relativistic Point Charge 

Assume that the source current lS comprised of a charged 

particle of charge q=Io moving at the speed of light along 

the center of the beampipe. This source current has the form 

of Eq. 2-1: 

(2-1 ) 

where the function o(r) lS the Dirac delta function and c is 

the speed of light. A current source in the form of Eq. 2-1 



produces the following source fields [8], denoted by a 

superscript s: 

Z I c 
EB(I,t)= 00 o(z-ct):f 

2nr 

I C 
fiB (I, t) =_0_ 0 (z-ct) <P, 

2nr 

where Zo is the characteristic impedance of free space. 

Taking the Fourier transform1 of Maxwell's equations with 

respect to time and using the current source in Eq. 2-1 

results in the following electric and magnetic fields 

Z I . I . 
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E~ B (~ r.,) _ 0 0 -lkz" r , ,,,, ---e r fiB (I, w) =-2 0 e-lkZ<p, 
nr 

(2 -2) 

w 
where k=-. 

c 

2nr 

C. Impulse of Current on a Center Conductor 

Consider the problem of an impulse of current with total 

charge q=Io traveling along a center conductor of radius ro in 

the beampipe of Fig. 1-9. This source has the following 

form: 

o (r-r ) 
J(I, t) =I co (z-ct) 0 z, 

o 2nr 
(2 -3) 

and will excite the following TEM mode: 

1 

Z I C 
EB(I, t) = 0 0 0 (z-ct):f 

2nr 

I C 
fiB (I, t) =_0_ 0 (z-ct) <p. 

2nr 

See Appendix B for the definition of the Fourier 
transform and Fourier transform variables used in this 
manuscript. 



The Fourier-transformed source fields are 

Z I 'k 
E~S(~ ,_,) _ 0 0 -~ ZA 

II VJ ---e I 
2TII 
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(2-4) 

By comparing Eqs. 2-2 and 2-4 one concludes that the source 

fields of an ultra-relativistic charged particle and the 

source fields of an impulse of current on a wire are 

indistinguishable. The fact that the source fields are the 

same between the wire and relativistic beam gave Sands and 

Rees [3] the notion to use a SWM to estimate the wakefield. 

D. Ultra-relativistic Gaussian Bunch 

Consider the ultra-relativistic Gaussian bunch with 

total charge q=I o ' For this source 

J(i'l t) = IoC e -( Z-a

ct
)2 6 (I) z. 

a[n 2TII 

The Fourier-transformed source and its fields are 

Z I _(~)2 
it s (i' w) = ~ e -ikz e 2 a :f 

I 2TII I 

The importance of Eq. 2-7 is the similarity in the z 

dependence of the fields to the case of the impulse of 

(2 -5) 

(2 -6) 

(2-7 ) 
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current. The salient difference in the transformed fields 

between the impulse of current and the Gaussian bunch is the 

attenuation of the fields for the Gaussian bunch with 

increasing frequency. 

E. Ultra-relativistic Time-Limited-Cosine-Squared Bunch 

Consider the time-limited-cosine-squared current 

distribution 

J(r,t) = 

(u(z-ct+ KO) -u(z-ct- KO)) l5 (r) z (2-8) 
2 2 2nr 

where the function u(z) lS the Heaviside step function 

U(z)={~ z;:::O 
z<O' 

KO 
and of total charge q=Io--' The parameter K is chosen such 

c 
that this distribution most closely resembles the Gaussian 

distribution described in Eq. 2-5. This was accomplished by 

minimizing the following function of K: 

I.( e - [~ )' -COS
2

( :: 1 r dz . 

2 

The mlnlmum K was found numerically and is equal to K= 

3.517868. This value will be used throughout the remainder 
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of this dissertation. A graph of a particular Gaussian 

(o=4.0mm) and a time-limited-cosine-squared current 

distribution (o=4.0mm, K=3.517868) is shown in Fig. 2-1. 

Each current source in Fig. 2-1 is normalized to contain an 

equal charge of q=2.31x10- 9 C. The important feature of Fig. 

2-1 is the similarity of the two current distributions using 

the minimum K. Additionally, Fig. 2-1 shows the tails of the 

Gaussian decaying as z~±= and the time/space limitation of 

the cosine-squared source at z=± KO~±O.0067 mm. 
2 

The Fourier transform of the time-limited-cosine-squared 

current distribution of Eq. 2-8 is 

Cossq (z I 
PP' 

gauss (z \ 
\ pp,' 

50 

-Q.O:! -Q.015 -Q.OOS o 
z 
PI' 

time limited cosine squared current source 
ga!.lSsian source 

0.005 O,ol 0,Ol5 0.02 

Figure 2-1. A plot of the spatial dependence (mm) for equal 
charge current distributions of a time-limited-cosine-squared 
source of Eq. 2-8 using the minimum K and o=4mm versus a 
Gaussian current source of Eq. 2-5 with o=4mm. 



( )

. z . WKO -l(,)-

Sln -- e C 

2c 6 (r) 
J(r, w) =Io ( (2rcC)2J -2-rc-r-

z 
W w 2

- --KO 
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and the Fourier-transformed electric and magnetic fields for 

the time-limited-cosine-squared current source are 

and 

F. Summary 

I 
ffB (r, w) = __ 0_ 

2rcr 

. (WKO) -ikz Sln -- e 
2c <$ 

(O( (02_( 2Kn
O
c rJ . 

The source fields presented in this chapter are the 

(2 -9) 

particular solutions to Maxwell's equations. The complete 

solution adds to these fields the homogeneous solution (where 

the source J=O) which will satisfy the boundary conditions 



29 

everywhere. The remainder of this dissertation discusses how 

one finds the homogeneous solution and comments on the 

validity of the calculated solution. 
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III. Determination of a New Integral E~~ation 

Using simple linear system theory Eq. 1-12 can be cast 

into a different form. The effect of all the cavity modes on 

the integral equation in Eq. 1-12 will be pointed out. It is 

an additional goal of this chapter to point out the steps to 

the realization of a new integral equation. The new integral 

equation turns out to be rather complicated and will not be 

solved. 

A. Background Definitions 

To represent the location of the cavity resonator (see 

Fig. 1-9) it is necessary to define a new function ug(z) : 

u (z)=u(z)-u(z-g), 
g 

where u(z) lS the Heaviside step function defined in Ch. II. 

The function ug(z) is therefore 

ZE[O,g] 
Z$[O,g] 

Note that this new function ug(z) has the convenient property 

that ug(z)=ug(z)ug(z). Taking the Fourier transform of ug(z) 

with respect to Z shows: U (q) = gf u (z)} = gf u (z) u (z)} = 
g "lg z'""lg g z 

1 
21t Ug (q) ®Ug (q) The 0 symbol represents the convolution 

operation. 

B. Derivation of Equation 

The integral equation derived by Gluckstern may be 

transformed into another integral equation using simple 



properties of the Fourier 

transform; this new integral 

equation suggests a new 

method for estimating the 

solution with linear algebra. 

Upon close examination of 

the cavity kernel Kc(z,z') In 

Eq. 1-7, the transformed 

integral equation can be 

arrived at in a fairly 

straightforward manner. 
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z 

Figure 3-1. The ¢-independent 
discontinuity or cavity 
region. The cavity region is 
chosen such that it lies 
exterior to the beampipe 
region. This effectively 
makes the cavity modes 
independent of the geometry 
exterior to the cavity. 

the normalized magnetic field for a particular mode of the 

coaxial cavity depicted in Fig. 3-1, with length g, and inner 

and outer conductors of radii a and b, respectively. Note 

that with these definitions, the cavity region is identical 

in both the problem with the center conductor and with a 

physical beam. 

The TM modes for the cavity depicted in Fig. 3-1 have 

the following field structure (1=0, 1/ 2, 3, ...... , m=l, 2, 3, 

... ) : 

~ "A] mPmC( A A A A) (lTtZ] E] ·z= ' Yo(tJ a)Jo(tJ r)-Jo(tJ a)Yo(tJ r) cos -- I 
,m wvTtg m m m m g 
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(3 -1) 

-iz if] .<$ =h] (r I z) 
o ,m 1m 

A lrr,z 
= ~ [Jo!(P r)Yo(p a)-Yo!(P r)Jo(p a)]cos(--)u (z) f 

Vrr,g m m m m g g 

A1,m I S are defined by 

1 
A =~====:;==::;=== 

],m 11 ·11* d-r 
cavity ],m ],m 

1 

b 

(1 + 5],0)[ r(Jo (Pma) Y1 (Pmr) - Yo Wma) J 1 (Pmr) )2dr 

The resonant frequencies of the TM cavity modes are 

The TEM modes in this annular region have the following 

field structure: 

• ~.f, 1 rr,lz 
-~ZH](rfz)·'P=h](r,z}" ~ COS(--)u (Z)I 

o b g g 
r rr,gln (-) 

a 
(3 -2) 
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The TEM resonant frequencies are 

2 2(1TI'.)2 W =c -
1 g 

and 1={l,2,3 ... }. An additional mode is necessary to 

accommodate the energy storage of the DC fields [9]. The 

normalized magnetic field distribution is 

(3 -3) 

Applying the TM and TEM definitions from Eqs. 3-1, 3-2, 

and 3-3 for the h1(r,z) shows that the cavity kernel in Eq. 

1-7 is specifically dependent on a product of cosine terms of 

equal frequency. By using a trigonometric identity that the 

product of cosines is a modulator 

1 
cos (A) cos (v) =- [cos (A-v) +cos (A +v) 1, 

2 

the cavity kernel can be rewritten into a sum of cosines 

rather than a product of cosines. Consider rewriting the 

cavity kernel into a functional form, replacing the infinite 

sum of cosine terms with the functions h(z-z') and h(z+z'). 

Rewriting the right-hand side (RHS) of Eq. 1-12 using this 
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functional form of the cavity kernel shows 

00 J dz1f(Z/) Ug(Z/) [Kp(lz-Z/1) + (h(z-z/) +h(Z+Z/))] . (3 -4) 

Equation 3-4 is expressed in a format similar to a 

convolution integral. Convolution integrals have the 

property that they may be transformed into a simple 

multiplication operation with the aid of the Fourier 

transform. Consider taking the spatial Fourier transform of 

Eq. 3-4 with respect to z, resulting in 

11 00 

F(q) K (q) +-F(q) H(q) ®U (q) +- U (q) ®.'T( f f (Z/) h (z+Z/) dz /) 
p 211: g 211: g -00 z 

00 

The quantity .'T( f f(Z/)h(z+z/)dz /) is outlined in Appendix C 
z 

and is F(-q)H(q) . 

Taking the Fourier transform of Eq. 3-4 results in 

2nZoH<jJS(r=a,q) '" 
ika =F(q)Kp(q) + 

+ ~ U (q) ® [ (F (q) + F ( - q) ) H (q) ] 
211: g 

(3 -5) 

In Eq. 3-5 the unknown quantity to solve for is F(q). It is 

evident that the original integral equation is now 

transformed into a new integral equation. This equation 
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shows some interesting properties. First, only the even part 

of F(q) contributes to the cavity interaction, which is only 

a consequence of the choice in the definition for the cavity 

location along the z axis. Next, note that since H(q) is the 

Fourier transform of a cosine function, H(q) is comprised of 

two delta functions. Furthermore, the convolution of 

F(q)H(q) with Ug(q) effectively generates a sum of shifted 

Ug(q), each scaled by a sampled F(q) at each of the 

eigenmodes of the cavity. 

equation to solve for F(q) 

This makes Eq. 3-5 a difficult 

The fact that F(q) is sampled at 

the cavity resonant frequencies suggests using a Fourier 

series technique to solve the original integral equation In 

Eq. 1-12. The Fourier series technique will be presented in 

Ch. IV. It is not apparent, however, how to readily solve 

the new integral equation. Perhaps with the use of other 

transformations and mathematical manipulations the new 

integral equation may be solved. One of these analytical 

techniques which may solve Eq. 3-5 is called collocation 

[10] . 



IV. Charged Particle Bea..l1l. Solution 

A. Theoretical Solution to the Integral Equation 

A method of estimating the solution to the integral 

equation in Eq. 1-12 using a Fourier series technique is 

introduced. This technique takes advantage of the 
. 21nz 
1.--
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orthogonality and completeness of the set of e g terms for 

a bounded interval of length g. Applying standard Fourier 

series techniques, make the following definition: 

(4-1) 

where f(z,W)=Ez(r=a,z,w). The presence of ug(z), defined in 

Ch. III, says that the representation of f(z) by the Fourier 

series is to take place on the interval {Oszsg}. MUltiplying 
-i 2pnz 

Eq. 1-12 by e g and integrating z over {Oszsg} while using 

the definition of Eq 4-1 for f(z,w), the pipe kernel term on 

the RHS of Eq. 1-12 becomes 

(4-2) 

Assuming that this summation is uniformly convergent for 

{Oszsg, Osz/sg}, it is therefore possible to pull the 
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summation out of the integrand, resulting in the following 

equation: 

For compact writing, make the following definitions: 

(4-3) 

... 80 ,0 81 ° 81 ° . .. Yo 

... 80 ,1 81 ,1 81 ,1 . .. Y1 e I?:. r I?:. 

... 8 O,p 8 2,p 
. .. 8 1,p 

... Yp 

The formulae for the 81 ,p and integrals which aid in both the 

calculation and the asymptotics of Eq. 4-3 are listed in 

Appendix D. Using this notation, the RHS of Eq. 4-2 may be 
00 

rewri tten as L Y 1 8
1
,p' or the pth row vector of e mUltiplied 

1 =-00 

by the column vector r. 
Now consider the influence of the cavity kernel. The 
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ca~Ji ty contribution is solved for by substituting the 

appropriate sum from the terms in Eqs. 3-1, 3-2, and 3-3 into 

the definition of the cavity kernel in Eq. 1-7. MUltiplying 
-i 2p11:Z 

the cavity kernel bye g and integrating z over {O~z~g} 

results in 

(4-4) 

Again, assume that the integral In Eq. 4-4 is uniformly 

convergent for {O~z~g, O~z/~g}, and it is therefore possible 

to pull the summation over lout of the integral. For 

compact writing, make the following definitions: 

g g ( . 2111:Z') ( . 2P11:Z) 
~l,P~ J dz J dz1e ~-g- Kc (z, Z/) e -~-g- , 

o 0 

~ 0,0 ~l, 0 ... ~ 1,0 

...... 
~ 

~O, 1 ~l, 1 ~ 1,1 (4-5) ... ..... 

~o'P ~2,P ... ~l,P 
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The formulae for the (l,p and integrals which aid in both the 

calculation and asymptotics of Eq. 4-4 are listed in Appendix 

D. Using this definition, the RHS of Eq. 4-4 is simply 

The final term to insert into the complex Fourier-

analysis is the left-hand side (LHS) of Eq. 1-12, which 

defines the source of excitation. Designate the quantity 

211: Z g _ i( 2plt Z ) 

'" 0 fd H-+ S ( _ ) • A g </)p- ika Z <I> r-a,zlw ze , (4-6 ) 
o 

where H<I>S(r=a,z,w) is the magnetic field intensity for a 

particular source distribution (e.g., Eqs. 2-2, 2-4, 2-7, or 

2-9). Using the definition for <Pp in Eq. 4-6, define the 

vector <l> 

At this point the integral equation may be rewritten into an 

infinite-dimensional linear equation. By applying the 
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definitions of the matrices e and 2, and the vectors ~ and 

[, an equation is obtained which defines the unknown vector [ 

(4-7) 

Equation 4-7 is an infinite-dimensional linear equation in [. 

The entire dependence of the pipe structure is contained in 

the matrix 0, the cavity dependence in the matrix 2, and the 

source in the vector ~. Equation 4-7 is valid for any 

geometry of excitation source under two conditions: the 

source geometry must be ~-independent and the source must 

have a Fourier transform. Using the formalism introduced by 

Gluckstern in either of Eqs. 1-6 or 1-8 for the pipe kernel 

and Eq. 1-7 for the cavity kernel, each element of the 

matrices e and 2 is stated in Appendix D. Equation 4-7 

represents a new form of the integral equation dictated in 

Eq. 1-12. The linear equation of Eq. 4-7 may be relatively 

easily solved and converges uniformly to the solution of Eq. 

1-12. 

B. Considerations for Calculating the Beam Impedance 

~. Choosing the Dimension to the Linear Equation 

The infinite-dimensional matrix equation in Eq. 4-7 

obviously cannot be solved exactly and must therefore be 

estimated. Choosing the dimension of the matrix turns out to 

be a function of the frequency range that lS desired for the 

solution, which in turn is a function of the source 

excitation. In this dissertation, the spectrum of the beam 
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impedance was calculated to 70 GHz since a Gaussian source 

distribution was assumed with o=4.0mm. The dimension p of 

the matrices and vectors were chosen to satisfy the following 

criteria: 

2prc k --» g highest 

Since this analysis uses the complex Fourier series, negative 

elements must be allowed into the solution. Adding the 

negative components raises the final dimension of the 

vectors, for example, to 2p+1. The final dimension for the 

calculations contained herein is 15x15 for the matrices and 

likewise 15x1 for the vectors. 

ii. Choosing the Frequencies and Number of Frequency Points 

Simply calculating the beam impedance accurately over 

the required 70-GHz bandwidth posed a problem since it is 

possible to completely skip cavity modes by not carefully 

choosing the correct frequencies to solve the matrix 

equation. A linear frequency span of 525 data points from 1 

Hz to 70 GHz was first chosen. Then, frequencies near the 

cavity resonant frequencies were added and the results were 

concatenated. This turned out to have an important effect on 

the modes below the first cutoff frequency of the beampipe 

and did not seem to change the results for frequencies higher 

than the first cutoff frequency of the beampipe. The reason 

for this is that the above-cutoff cavity modes are 
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essentially "de-Q'd" and mathematically do not behave as 

violently in the vicinity of the resonance as do the cavity 

modes below cutoff. 

~~~. Perfect Conducting Boundary Considerations 

An important practical consequence arises from solving a 

perfect conducting cavity system below cutoff [11]. This can 

be likened to solving a circuit problem similar to the 

coupled resonator circuit without the loss resistor depicted 

in Fig. 1-8; this is shown in Fig. 4-1. The impedance of the 

perfect conducting coupled resonator circuit is readily 

found: 

iWL 
z(W)= couple 

l-W 2 C(L . +L ) 
cav~ ty couple 

This particular Z(w) has no 

inverse Fourier transform or 

impulse response for two 

reasons. First, the right-

hand term of Eq. 4-8 grows 

wi thout bound as W----1oo. The 

physical solution is not 

affected by this result since 

the model of Fig. 4-1 is both 

band limited and only assumes 

iw 3 L . L C 
cav~ ty couple 

(4-8) 
l-W 2 C(L . +L ) 

cav~ ty couple 

L cavity C Cavity 

L Couple 

Figure 4-1. Below cutoff 
representation for cavity 
coupling circuit. 
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a single mode. The existence of mUltiple modes causes the 

high frequency inductance of the right-hand term to couple to 

the higher frequency cavity modes [12]. Additionally, the 

integral equation in Eq. 1-12 controls the coupling 

mechanism, which is a function of frequency and not simply an 

inductor as depicted in Fig. 4-1. Second, the left-hand term 

in Eq. 4-8, which describes the parallel resonant nature of 

the circuit, requires that the resonant frequency 

be complex for the inverse Fourier transform to exist. This 

particular term posed a problem for verifying the work 

contained in this dissertation because Simpson et al. 

recorded the experimental data in the time domain while the 

numerical analysis was done in the frequency domain. Using 

Fourier transform techniques, a method of taking the 

theoretical data back to the time domain was sought. If one 

were to naively take the numerical inverse Fourier transform 

of the unmodified perfect conducting Z(w) in an attempt to 

find the impulse response, it would be apparent from finding 

non-causal results that a problem exists in the calculated 

time domain data. 
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Modifying the computed 

data near the parallel 

resonant frequency solved the 

problem of computing the 

wakefield. This modification 

was performed by comparing 

the response of the ideal 

problem depicted in Fig. 4-1 

to that of a more realistic 

coupled resonator problem 

Figure 4-2. Non-ideal circuit 
equivalent of Fig. 4-1. This 
circuit was used to modify the 
beam impedance response for 
below cutoff cavity modes. 

shown in Fig. 4-2. For this circuit, Z(w) takes on the form 

iw 3 L . L C+U)2L RC-iwL 
Z ( U)) = cav~ ty couple couple couple 

W2 C(L . +L )-iU)RC-l 
cav~ ty couple 

(4-9) 

The inverse Fourier transform of the impedance In Eq. 4-9 

does not exist. Examination of Z(U)) for large W shows that 

Z(w) grows without bound. Similar arguments used in the 

circuit of Fig. 4-1 explains that this effect can be 

neglected. The prominent difference between Figs. 4-1 and 4-

2 is the existence of a real resonant frequency for Fig. 4-1 

and a complex resonant frequency for Fig. 4-2. The complex 

resonant frequency assures that the excited fields will 

evanesce and the inverse Fourier transform will then exist. 

The resistor in Fig. 4-2 is chosen such that the cavity 

parameter Q is comparable to the Q of the resonance of the 
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cavity without the beampipes attached. Q's on the order of 

15,000 were used to modify the calculated ideal beam 

impedance in this analysis. The cavity inductance was 

calculated by an appropriate integration of the magnetic 

field and the capacitance was calculated by an integration of 

the electric field. The net effect of this modification is 

the addition of a real part to the beam impedance in a small 

frequency range near the cavity eigenmodes. The imaginary 

parts of the impedance were not modified with this circuit 

model. Modification of the computed data is not necessary 

for the cavity modes whose frequencies are higher than the 

first cutoff frequency of the beampipe. 

C. Computational Results 

~ . Assumptions 

The computations outlined below for the geometry 

depicted in Fig. 1-9 were done with the intention of 

simulating the measurement made by Simpson [13] The 

dimensions for this particular simulation are: 

$ Gaussian Beam -- waist (0) = 4.0 rom 

$ Charge in the Bunch (q) = 2.31 nC 

$ Length of Cavity (g) = 0.32 cm 

$ Cavity Outer Diameter (b) = 1.95 cm 

$ Beampipe Diameter (a) = 0.63 cm 

• Number of Cavities = 103 
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The errors caused by truncating the infinite sums in 

Eqs. D-l through D-6 for both the cavity and pipe modes have 

been estimated in the analysis. It is also assumed that the 

wakefield for 'n' cavities is simply the instantaneous 

superposition of 'n' wakefields. This clearly is a major 

assumption and perhaps explains the discrepancies between the 

measurement and the simulation. 

ii. Perfect Conducting Boundary Modification 

Figure 4-3 is a plot of the calculated beam impedance. 

The first two spikes of impedance occur near 6 GHz and 15 

GHz, which are a result of the first two TM cavity modes. 

These two cavity modes required the addition of a real 

component to the beam impedance in the vicinity of the 

resonance and the resulting graph is shown in Fig. 4-4. 

Another prominent feature of the beam impedance, which 

occurs near 18 GHz, is caused by the excitation of the first 

propagating pipe mode. The existence of a positive real part 

to the beam impedance is calculated as expected for all 

frequencies above the first pipe cutoff frequency. The 

computed wakefield for the beam impedance in Fig. 4-4, with 

the aforementioned Gaussian current source, is shown in Fig. 

4-5. 
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4-5. The calculated wakefield (eV) for the S 
described in Ch. Iv.C.i. versus time (s). 

Comparison of Theory to Measurement 

A plot from the actual measurement made by Simpson lS 

48 

shown in Fig. 4-6. The differences between the actual 

experiment and the theoretical analysis were carefully 

considered and the explanations of the measurement and 

measurement technique were studied. The relative magnitudes 

and phases between Figs. 4-5 and 4-6 show reasonable 

agreement and provide evidence that the method presented to 

solve Eq. 1-12 with the complex Fourier serles is justified. 

Simpson's experiment was comprised of 103 resonant 

pillbox cavities. Each cavity had to be individually 

machined and, therefore, each cavity was slightly different 
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180 
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Delay (PS) 

Figure 4-6. Wakefield measurement by Simpson et al. [13] 

from its neighboring cavities. Minute differences in radii 

and length cause each cavity to have slightly different 

resonant frequencies. The use of several cavities of 

slightly different resonant frequencies is used in the design 

of klystrons for broadband amplification. The summation of 

different resonant frequencies causes Simpson's experiment to 

have a broader frequency response than, for example, a single 

cavity. 
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Ii. fundamental difference between the experimental data 

and the theoretical data is an evanescence caused by the use 

of a practical excitation source. Figure 4-7 illustrates 

this effect. The definition of beam impedance requires the 

excitation source to be an impulse of current, which is 

physically impossible. The use of a Gaussian (Eq. 2-6) or a 

time-limited-cosine-squared (Eq. 2-8) source to excite the 

cavity are closer to realistic geometries in use for many 

particle accelerators. This will cause the "measured" beam 

impedance to artificially decrease with increasing frequency, 

thereby lowering the excitation of the higher-order modes. 
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4-7. Impedances (0) caused by different source 
stributions versus frequency (Hz). 
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Simulation of a Gaussian 'Hitness bunch interacting with a 

Gaussian beam impedance did not show any appreciable change 

in the time domain data. There is, however, a stronger 

evanescence in the frequency domain for the Gaussian source­

Gaussian witness than in an impulse source-Gaussian witness. 

The low-frequency cavity modes were excited equally from the 

Gaussian source-impulse witness as the impulse source­

Gaussian witness calculation of the wakefield. The net 

effect was that the high-frequency decay did not play a 

significant role in the time domain results when either a 

practical driving source and/or a practical witness source 

was considered. 

D. Conclusions 

The analytical tools presented in this chapter provide a 

method to adequately solve the integral equation in Eq. 1-12 

with the use of Eq. 4-7. It is important to know the first 

cutoff frequency of the beampipe as well as the frequency of 

the first pillbox cavity mode in order to appraise whether or 

not it is necessary to modify the resulting beam impedance 

data. The modification method presented in this chapter 

applies only to pillbox modes which are coupled strongly to 

the particle beam. It is necessary to consider practical 

current source geometries in the analysis since an impulse of 

current has infinite bandwidth. 



V. Stretched Wire Analysis 

A. Theoretical Solution 

i. Introduction 
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The solution to the problem in Fig. 1-9 with a center 

conductor of radius r=ro is estimated using the same complex 

Fourier series techniques used to solve the open beampipe 

geometry and current sources described in Ch. IV. Since the 

general method of solving Eq. 1-12 is identical to the 

charged particle beam, a discussion of the differences and 

changes in estimating the solution of Eq. 1-12 for the 

geometry with the center conductor will be presented. 

~~. Change in Pipe Kernel Definition and Cavity Coupling 

The first difference between the stretched wire 

measurement and a physical beam is the obvious change In 

geometry and boundary conditions caused by the introduction 

of the center conductor. Mathematically, this changes the 

definition of the pipe kernel in the analysis of Eq. 1-12, 

and Eq. 1-8 must be used for the pipe kernel rather than Eq. 

1-6. The additional coefficient terms of Eq. 1-8 (the as In 

Eq. 1-9) describe the differences in coupling between the 

cavity modes of either the open beampipe or the center 

conductor beampipe. Physically, adding the center conductor 

has three fundamental effects. First, it allows energy to 

couple into and out of the cavity via the TEM pipe mode. 

Secondly, it shifts the cutoff frequencies of the TM 
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waveguide modes of the beampipe. Finally; the addition of 

the center conductor introduces a set of coefficients in the 

definition of the center conductor pipe kernel in Eq. 1-8. 

Each coefficient in Eq. 1-9 dictates a different level of 

coupling from the waveguide pipe modes to the cavity modes 

than what was observed in the open beampipe. In fact, the 

coupling from the beampipe to each cavity mode is stronger 

for the center conductor beampipe than for the open beampipe. 

Estimating the coupling coefficients for asymptotic 

calculations was performed by first finding the cutoff 

frequencies of the center conductor beampipe from the 

equation 

r r 
J o (i ) Yo (i -.::) =Jo (i -.::) Yo (i ) . 

S Sa Sa S 

r 
• 0 

When i s>l and ls-->l/ the asymptotic forms of the Bessel 
a 
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1--':: 
a 

a=----------I:::------r-----~ 
S S r 

J
0

2 (i -.::) -J
0

2 (i ) 
S a S 

sna 
r a-r 

n 
4 

1- -.:: __ -1-___ 0 __ '.-

a snr 
° a-r 4 
° 



54 

As S-7=, as does not have a formal limit. To estimate the 

truncation error of the center conductor pipe matrix requires 

an estimate of as for large s. The propagating pipe modes 

and the lowest order evanescent modes make the largest 

contribution to the pipe kernel. Examining as for large s 

shows that a bound for as exists and is 

a 
a sa=--. 

S a-I 
o 

Replacing as by a introduces an error to the estimate of the 

pipe kernel. To reduce the error from the introduction of at 

the point of truncation for the series in Eqs. D-1 and D-2 

must be sufficiently high such that the leftover series uses 

the estimate of a. The truncated sum must be much greater 

than the leftover sum. 

Figure 5-1 is a plot of as versus s for a 50-0 coaxial 

beampipe. Calculating 

the limiting value a for 

the 50-0 geometry shows 

a=1.769. For a 50-0 

geometry, the first 15-

20 as fail the 

assumption that 

and these first 

terms must be 

1.78 I----r---+---+----I 

1.77 p.1\'""'_===t====t=====t=====I 

1.76 L-__ --'-___ --..l.. ___ -'-___ -" 
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• 
Coeffecients for 50 ohm coupling line 

5-1. plot of the actual 
50-0 coupling line. 
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individually calculated in the summation of the pipe kernel 

Consequently, the minimum point of truncation must be large 

enough such that as remains relatively constant. The final 

180 as' however, appear to converge to the bound. The error 

in the estimate of the truncation error is therefore 

minimized by choosing the point of truncation to be: 1) 

large enough to include several evanescent modes and all 

propagating modes and 2) large enough such that the as has 

settled to a point where an estimate of it can be adequately 

made. 

iii. Addition of a Loss Mechanism and Data Modification 

The presence of the wire may reduce the numerics of the 

computation because the wire adds an effective loss mechanism 

to all of the cavity modes. The loss mechanism is a 

consequence of the TEM pipe mode and its ability to carry 

stored energy out of otherwise loss-less cavity modes. A 

loss mechanism was discussed in Ch. IV, Figs. 4-1 and 4-2, as 

a numerical necessity for the existence of a causal inverse 

Fourier transform of the beam impedance. Since the computed 

data will be causal, the additional loss mechanism reduces 

the post-computation work and therefore does not require the 

changes that the computation depicted in Fig. 4-1 suffers. 

No computational savings will be experienced, however, 

between the open beampipe and the center conductor beampipe 

if the resonant frequency of the first cavity mode occurs 
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above the cutoff frequency of the open beampipe. 

~v. Change in Definition of the Beam Impedance 

An obvious difference with the presence of the wire is 

the required change in the definition of beam impedance. The 

mere existence of the wire on axis requires the wakefield to 

identically vanish. It has been proposed that the fields are 

only locally disturbed by the presence of the wire and a 

similar wakefield-type quantity may be defined by shifting 

the location of the definition for the wakefield to a 

position off-axis. Arbitrarily, it is chosen to define a new 

path of integration for defining the wakefield from Fig. 1-1 

to a path along the wall of the beampipe. The modified 

definition for the beam impedance from Appendix A is then 

1 g , 
Z (w) ~--JE (r=a z w) el.kz dz beam z, , , 

qo 

where E (r=a,z,w) lS computed with a complex Fourier series z 

along the interval {O~z~g}. Examination of the limits of the 

integration in this new definition implies that the 

contribution to the wakefield exists only at the specific 

location of the cavity. The inability for both the 

propagating and evanescent pipe modes to interact with the 

beam outside of {O~z~g} is a nonphysical assumption. It has 

been shown with stretched wire measurements that the 



evanescent pipe fields of a cavity mode contain significant 

energy. The evanescent pipe fields can be, to first order, 

taken into consideration by allowing the unperturbed cavity 

fields to evanesce into the pipe [14]. The effect of 

propagating pipe modes and its coupling to cavity modes are 

not as easily estimated, and general conclusions cannot be 

easily drawn. 
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This definition for the impedance is not necessarily 

useful. The presence of the wire shorts out the accelerating 

electric field. The off-axis electric field is thereby 

attenuated several orders of magnitude. This term will not 

be used or discussed in the remaining portions of this 

dissertation. 

v. Beampipe Cutoff Frequency Change 

Adding the center conductor has the effect of changing 

the TM cutoff frequencies of the beampipe. Note that the 

cutoff frequencies for each TM pipe mode always increase with 

the addition of a center conductor. If the addition of the 

center conductor causes the cutoff frequency of a beampipe 

mode to shift such that a dominant cavity mode couples energy 

into an evanescent pipe mode rather than a propagating pipe 

mode, then the stretched wire measurement may show an 

artificially higher Q than what is witnessed with a charged 

particle beam. In the same way, the addition of the center 

conductor can cause the Q of cavity modes to appear 
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artificially low if the cavity modes occur in a frequency 

regime where the TEM pipe mode is dominant over the lowest 

cutoff frequency beampipe mode. Figure 5-2 is a contrived 

example which demonstrates this phenomenon. Figure 5-2 is a 

relative plot of the magnitude of the open beampipe kernel 

(Eq. 1-6) and the center conductor beampipe kernel (Eq. 1-8) 

for a particular value of z=z'=O. The cavity energy storage 

is an integration of the electric and magnetic fields in the 

region {O~r~b; O~z~g} and has units of joules. In Fig. 5-2 

it is assumed that the shift in cavity resonant frequency 

caused by the introduction of the wire is negligible with 

respect to the shift in the first TM cutoff frequency of the 

nocenter. 
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5-2. Relative plot of the pipe kernels 

:2 

fu 

( ionless) and cavity energy storage (joules) versus 
normalized frequency. Note the shift in cutoff frequency 
between the open beampipe and the beampipe with the center 
conductor. Between the cutoff frequencies is a cavity mode, 
which would have an artificially higher Q with the center 
wire present. 
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beampipe. The strong peaks In the cavity plot of Fig. 5-2 

show that the cavity stores energy in its modes at both w=O 

and w=2TI. Each of the pipe kernels has the property that a 

particular pipe mode behaves strongly in the frequencies near 

the vicinity of the cutoff frequency of each pipe mode. 

Additionally, each propagating pipe mode decays as 

wi th W>W cutoff for each respective pipe mode s. Since the 

first dominant mode for the center conductor pipe kernel is 

the TEM mode and its cutoff frequency is wo=io=O, the 

effective coupling of the TEM pipe mode is inversely 

proportional to frequency. The dominant propagating pipe 

mode for a particular bandwidth B contributes the most to the 

loss mechanism for all the cavity modes with resonances 

contained within B. Therefore, if frequency is high enough 

such that the TEM mode is sufficiently decayed out of the 

pipe kernel, and if a TM pipe mode exists whose cutoff 

frequency passes through a cavity mode by the introduction of 

the wire, then the cavity mode will have an artificially 

higher Q in the presence of the wire. 
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vi. Example of a Relationship between SWM Impedance to Beam 

Impedance 

a. Introduction 

The use of network analyzers to perform stretched W1re 

measurements requires a formula to relate the scattering 

parameters back to the beam impedance Zbeam' The derivation 

of this relationship requires the following assumptions: 

W 
• k~--, a frequently used definition for wave number used 

c 
throughout this dissertation. 

$ ka<l, an implication that the frequency of interest is 

far below the first TM cutoff frequency of the beampipe. 

This assumption allows an additional assumption that 

Ez (r=a, z) ::=:Ez (r= 0 , z) . 

$ kg<l, an assumption that the z dependence of Ez(r,z) 1S 

constant, i.e., Ez(r=a,z) =Yo' where Yo is a constant. 

The requirement of kg<l may be relaxed, for example, by 

demanding that 

~ . 21rcz 

E (r=a,z)~f(z) =~ y e~--g-
z 1=-1 1 

Using this assumption, however, changes the proceeding 

results. Allowing higher dimensions in the estimate of 

Ez(r,z) allow a more rigorous and broadband estimate of 

both circuit and beam impedances. 

• impulse source distribution defined in Eq. 2-3. 
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k(b-a)-70 assumes that the size of the discontinuity lS 

small with respect to a wavelength. 

Since Ez(r,z) is assumed to be a constant function of z, 

Eq. 4-7 changes into a simple linear equation of one equation 

and one unknown. The e and 3 matrices each become a lxl 

matrix whose only elements are 80 ,0 and ~o,o' respectively. 

The ~ vector contains one element, ~o. The constants of the 

linear equation, namely ~o,o(W) and ~o(w), need to be 

calculated once since their definitions do not change between 

the analysis of the SWM and the real charged particle beam. 

The 80 ,0 changes between the two scenarios and needs to be 

recomputed with each respective analysis. 

b. Calculation of Zbeam 

Applying the definition of Eq. 4-6 to the impulse 

current source in Eq. 2-3 reveals 

2TIZ fg 
I . Z I (. ) ~ =_. __ 0 __ o_e-~kzdz=_o __ o e-~kg-l . 

o ~ka 0 2TIa k 2 a 2 

-iz I g 
Since kg< I, ~o may be estimated as ~ ~ 0 0 since 

o ka 2 

e-ikg~l-ikg for kg<l. The formulae for calculating the 

elements of the matrix equation are found in Appendix D. 

Using Eq. 4-4 to find ~o,o is rather involved since one 

lS required to find all of the cavity modes and their 

respective normalizations. At low frequency, however, the 

dominant mode of the cavity kernel is the DC mode described 
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In Eq. 3-3. The effect of the DC mode on ~" " is v, v 

The truncation error of ~o,o lS therefore the sum of all the 

cavity modes besides ~o,o DC. The truncation is a sum which is 

a real constant that can be calculated. Define the 

truncation error ~T as 

The terms ~o,o DC and ¢o are both singular as k-70. For low 

frequencies note that ~o,o DC:»~T· 

Calculating 80 ,0 using Eq. 4-3 with the plpe kernel of 

Eq. 1-6 shows that 80 ,0 is bounded for k-70. Comparing 80 ,0 to 

~ reveals 8 <~ This implies that the dominant factors SO,o 0,0 0,0· 

in the linear equation are the DC cavity mode and the 

excitation source. Inserting 80,01 ~0,01 and ¢o into Eq. 4-7 

identifies the linear relationship 

Solving for Yo results in 

- ikz I In ( b) 
o 0 a 

211: 1+ 



63 

Inserting the definition of Yo into the normalized definition 

of beam impedance in Eq. A-I results in 

1 9 1 9 
z (w) =--JE eikZdz=-_!y eikZdz~-y g 

beam q Z q 0 0 q 
o 0 

2n 1+ 

This equation is correct to first order and shows the well-

known result that the beam impedance of a change in beampipe 

diameter equates to magnetic energy storage [15]. 

c. Calculation of S21 

The mathematics of the center conductor beampipe 

requires an additional term (from the additional TEM mode) 

that the open beampipe did not possess. Using Eq. 1-8 in the 

defini tion of 80, ° reveals 

15 
2ni ~ aSJgJg -i aSlx-yl 

8 =--L.. - dxdye 
0,0 a =0 c S .u

sOO 
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The second term in this expression, 80 ,OT' is a real number 

and has a numerically predictable relationship to the 80 ,0 

calculated for the open beampipe. The first term, however, 

is the result of the TEM contribution to Ez . Expanding this 

expression for kg~O shows that there is no TEM contribution 

Inserting the results of the calculation of 8 0 ,°' ~o,o' 

and $0 into Eq. 4-7 produces 

Solving for Yo results in 

-ikZ I ln ( b) 
o 0 a 

211: 1+ 

The transmission coefficient is found by substituting the Yo 

into Eq. 1-10. This results in a calculated transmission 

coefficient of 

a 
2cln(-) 

r o 
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corresponding to a lumped circuit element of2 

ikZ ln ( b) g 
o a 

Z circui t ( w) ~ ---2-n---

Again, this equation is correct to first order. If frequency 

is low enough such that the higher-order terms can be 

neglected, the TEM circuit impedance converges to the beam 

impedance exactly. The presence of the magnetostatic cavity 

mode allows the circuit impedance to converge to the beam 

impedance. The low frequency circuit model derived in this 

section is different than the high frequency model presented 

in Fig. 1-7 in Ch. I.C. The difference in each respective 

model represents different frequency assumptions. 

vii. Summary 

The presence of the wire can dictate a strong cavity 

mode evanescence caused by the addition of the TEM loss 

mechanism. Ironically, the presence of the wire may also 

cause the measured Q of a particular cavity mode to increase 

if the shift in pipe cutoff frequency changes about the 

cavity resonant frequency and the TEM mode can be neglected. 

The introduction of the wire requires a new pipe kernel in 

Eq. 1-12. The Wlre may decrease the post-computation work 

since the Wlre introduces an effective loss mechanism to all 

cavity modes. 

2 A description of the formulation for calculating the 
circuit impedance from S21 is found in Appendix E. 
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B~ Center Conductor Cutoff Effects 

It is important to know the effect of the relative size 

of the center conductor on the cutoff frequency of the 

beampipe in order to know how the solution of the open 

beampipe compares to the solution of the stretched wire 

measurement. 

In the following work, it is assumed that the reglon of 

interest only includes the first cutoff frequency. The 

method is general enough such that it can be applied to any 

of the cutoff frequencies and the results are likewise 

similar. 

(5-1 ) 

Consider the two transcendental equations which 

respectively determine the set of cutoff frequencies for the 

case of the open beampipe and the stretched wire measurement: 

where 

jl 
k =-

cutoff a 
i

1 k =-
cutoff a 

r 
Assuming that ~<1, substitute the small argument form of 

a 

the Bessel functions [16] into the formulae of Eq. 5-1 and 

take the Taylor series expansion of both Jo(x) and Yo(x) about 

the point X=jl' After several algebraic manipulations, it is 



possible to show that 

fl.j t. ~1-]1 

j1 j1 

r 
o 

varies directly (for --<1) with the ratio 
a 
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Figure 5-3 is a linear scale plot of 
fl.j 

versus the ratio of 
jl 

center conductor radius (ro ) 
r 

to the beampipe outer conductor 

radius (a). Near ~~O in Fig. 
a 

fl.' 
5-3 it appears as if -!-
fl.j 11 

approaches a constant value of -.-zO.15. Changing the axis 
11 

to a logarithmic scale in Fig. 5-4 allows a more detailed 
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Figure 5-3. Graph depicting the dependence of the percent 
change in cutoff frequency on the ratio of center conductor 
to outer conductor. 
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Mathematically, it is clear 

/1j 
dependence of - for small 

- jl To a 
that in the limit of ---0 that 

r 

view of the origin and the 
o 

T a /1j 
--0. 
jl To 

It is not practical for ~-O and perhaps only a ratio 
a 

of --zO.05 is in practice achievable. 
a T 

ratio ~=0.05 causes a frequency shift 
a 

Using the limiting 
/1j 

- of about 25%. 
jl 

Shifting the cutoff frequency of the beampipe by 25% is 

significant and this effect must be included in the final 

interpretation of the results. 

Most network analyzers and mlcrowave measurements are 

made using 50-0 coaxial TEM transmission lines. From Fig. 5-

To 1 
3, using a 50-0 TEM coaxial geometry (i.e., -~--)O 

a 2.3 

requires the cutoff frequency of the first TM mode to be 

almost doubled from that of an open beampipe. Figure 5-2 

showed that shifting the cutoff frequencies of the beampipe 

changed the measured Q's of cavity modes. It is clear that 

care must be exercised and measurements must be scrutinized 
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0.1 



when using the center conductor to simulate a beam of 

relativistic charge. 

C. Measurement Data 

i. Introduction 
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The goal of this dissertation is to compare the 

stretched wire measurement with a real beam measurement. The 

real beam measurement is described in Ch. IV and was 

performed by Simpson et al. The stretched wire measurement 

was designed around the parameters Simpson used in his 

experiment: 

.. a=0.63 cm / 0.248 in. 

e b=1.95 cm / 0.768 in. 

e g=0.32 cm / 0.125 in. 

e ro=0.274 cm / 0.108 In. '" 50-Q reference line. 

A reference line, shown in Fig. 5-5, was constructed out 

of eight individual and interlocking pieces of brass to fit 

the geometry dictated by Simpson's experiment. Two linear 

tapered sections change the geometry from the 50-Q cables 

connected to the ports on the network analyzer to a 50-Q air 

dielectric coaxial transmission line. The outer diameter of 

the straight section is equal to Simpson's beampipe diameter. 

Commercially purchased SMA connectors were soldered to the 

machined center conductor to make stretched wire 

measurements. 
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5-5" CAD drawing for the 50 Q reference line used 
the stretched wire measurement 0 All dimensions are in 
inches 0 

The measurement results will be presented by first 

showing the frequency domain results from a network analyzer 

and then by showing the results of a short impulse that was 

fed into the cavity and comparing it with the frequency 

domain measurements 0 Interpretations of the different 

measurement techniques on the beam impedance and wakefield 

will finally be presentedo 

ii" Network Analyzer Measurement Considerations 

ao Reference Measurement 

Before the cavity was carved into the structure, the 

scattering (s) parameters were measured to establish the 

reference measurement [17]. The stretched wire measurement 

was performed with a 20-GHz HP 8510C network analyzer. 
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F ure 5 6. magnitude plot of 821 versus 
(Hz). The periodic ripple is a result of a resonance caused 
by mismatches of the connectors with the physical length of 
the reference line in Fig. 5-5. 

Figure 5-6 is a linear scale plot of the magnitude of the 

transmission (S21) for the reference line. This plot shows 

relatively good transmission for the entire bandwidth of the 

measurement, having a minimum transmission IS211=0.915 at 18 

GHz. The periodic ripple in the measurement is caused by a 

resonance between the physical length of the reference 

section and the dielectric mismatch at the interface between 

each connector and the tapered sections of the reference 

line. The ripple is easily observed in the measurement of 

reflection (Sll) depicted on a logarithmic scale in Fig. 5-7. 

In the frequency range of 8.5-15.5 GHz small "noise-

like" resonances can be seen. Several phenomena cause these 

small resonances including: 
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the SMA connectors 
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• The two linear tapered matching sections are not the 
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same physical length, and each of these lengths produces 

resonances at slightly different frequencies. This may 

cause the measurement to appear "noisy" when in fact 

multiple resonances appear close together. 

The tapered sections of the center conductor and the 

outer housing have radial geometrical differences. 

These include small angular differences in the tapered 

sections between the center conductor and housing as 

well as non-smooth interfaces between the tapered 

sections and straight sections. These reflections 
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resonate with the electrical length of the tapered 

section. 

Tiny pieces of solder embedded in the connectors, poor 

solder joints, and structural anomalies were detected by 

calculating the inverse Fourier transform of the reflection 

coefficients. The inverse Fourier transforms of I Sl1 (w) I 

plotted in Figs. 5-8a 

and 5-8b to verify 

that the reflections 

from each port of the 

reference line is of 

the same magnitude. 

The two large peaks 

in the impulse 

response of Figs. 5-

8a and 5-8b represent 

the reflections 

caused by mismatches 

from each connector. 

The small ripples at 

time t=O.33 ns in 

Fig. 5-8a and time 

t=1.33 ns in Fig. 5-

8b are caused by a 
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small machining imperfection between the tapered and straight 

sections on port 1. 

b. pillbox Cavity Measurement and Prediction 

After the reference data were collected, the reference 

line was disassembled, and a single-cell pillbox cavity was 

carved into the housing. A drawing of the new geometry is 

depicted in Fig. 5-9. The frequency domain measurements of 

IS111 and IS211 are shown in Figs. 5-10 and 5-11, 

respectively. A close correspondence is seen between the 

predicted and measured reflection and transmission. The 

periodic ripple observed in Fig. 5-7 is again observed in 

Fig. 5-10, but only for frequencies away from the sharp 

resonances depicted in the IS211 measurement in Fig. 5-11. 

The phase of the prediction and reflection again showed 

excellent correspondence. 

--1,25 

0.496· 

r--------- 5 625 -------"*"'<-

Figure 5-9. Reference line with a small pillbox cavity 
carved into the midsection. 
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F 5-10. Plot of measured and calculated reflect 
versus frequency (Hz). The ripples in the measurement were 
caused by residual mismatches and discontinuities in the 
matching network. 

The TMo,l,O resonant frequency for a coaxial cavity with 

inner and outer radii at 0.274 cm and 1.95 cm, respectively, 

is 8.6 GHz, whereas the TMo,l,O resonant frequency for a 

pillbox cavity of radius 1.95 cm is 5.88 GHz. The sharp 

decreases in transmission in the measurement of Fig. 5-11 

correspond therefore to the parallel resonance of the net 

capacitance from the series cavity impedance with the 

inductive coupling mechanism shown in Fig. 1-7. 
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F 5 11. Plot of measured and calculated transmission 
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iii. Time Domain Measurements and Results 
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1 

The impulse response of the cavity structure in Fig. 5-9 

was measured using the experimental setup in Fig. 5-12. A 

personal computer was used to record the measurement data 

from the HP 54120B 50-GHz sampling oscilloscope. Channel 1 

on the HP 4124A produces a train of long rise-time step 

functions at a low repetition rate (50 kHz) which trigger a 

Picosecond Pulse Lab (PSPL) 4015 pulse generator. The PSPL 

4015 produces a short rise-time step function. The short 
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F 5-12. Schematic for the time domain impulse response 
stretched wire measurement for a general DUT. 

step is fed into a matched passive waveforming network (PSPL 

5208) which functions as a differentiator. Since the input 

to the PSPL 5208 is a step function, the output of the PSPL 

5208 is an impulse. A plot of the measured impulse is shown 

in Fig. 5-13. 

When the impulse from Fig. 5-13 is fed into the cavity 

of Fig. 5-9, the physical length of the structure causes the 

resulting waveform to be shifted In time. The cavity 

response to the pulse of Fig. 5-13 is time shifted 632 ps 
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5-14. Shifted cavity response (V) to the impulse 
Fig. 5-13 versus time (s). 

resulting in Fig. 5-14. The time shift of the cavity 

& 

response in Fig. 5-14 allows the plot of both the pulse and 

cavity response to be conveniently displayed on one graph. 
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To find the 

transmission of the cavity, 
, " C /'" ) hCt) yCt) 

it is necessary to find the 

transfer function of the 

cavity. This was performed 

by first analyzing the 

problem in the frequency 

HCw) ~Y( C w )-1'----_ 
5-15. 

parameters. 
General system 

) 

domain and then making the assumption that the cavity network 

is a linear system. First, the spectrum of the time-domain 

input signal in Fig. 5-13 was calculated. Next the spectrum 

of the time-domain cavity response, Y(w) in Fig. 5-15, to the 

input was calculated. Examination of the system and signals 

ln Fig. 5-15 leads to the following definitions: 

x(t)~ input signal 

y(t)~ output response due to excitation x(t) 

h(t) ~ system transfer function 

.. H(W) 
Y(w) 
X(w) 

The time-domain data was assumed to be zero when the 

measurement data had the same order of magnitude as the noise 

floor of the sampling scope [18]. The spectra of the input 

signal X(w) and the output signal Y(w) are presented in Fig. 

5-16. 
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F 5-16. Input spectrum to the cavity and the 
spectrum from the cavity due to the input to the cavity. 

Using Parseval's Fourier transform relationship 

the frequency-domain response was truncated at 28 GHz. The 
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spectrum of the transmission IH(W)I for the cavity is plotted 

in Fig. 5-17. Since the network analyzer that made the 

frequency-domain measurement had an upper limit on its 

frequency synthesizer, a comparison of the calculated 

frequency response to the frequency-domain network analyzer 

measurement was desired. The results of this comparison are 

plotted in Figs. 5-18 and 5-19. Figure 5-18 is a frequency-

domain plot comparing the network analyzer measurement of 
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IS211 to the Fourier transformed time-domain measurement of 

transmission. Figure 5-19 is a plot showing the similarity 

of the inverse Fourier transform of S21(W) and the calculated 

impulse response from the time-domain measurement of the 

cavity structure. These results show that the stretched 

wire measurement can be treated as a linear measurement. 
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. P 

Magmtude of output spectrum / input spectrum 

F 5-17. Magnitude of impulse response 
of cavity structure from time-domain data. 
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5-18. Comparative plot between the frequency response 
the analysis of the time-domain measurement to the 

network analyzer measurement. 
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5-19. Impulse response to the cavity network (V) 
compared to the inverse Fourier transform of the S21 data from 
the network analyzer versus time (s). 
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~V. Comparison of Beam Impedance to Circuit Impedance 

a. Introduction 

The general equation used to find the lumped circuit 

impedance from the scattering parameters measured with the 

reference and cavity stretched wire measurements is 

Z(W)=2R ( a reference 

S21ref (W) -S21DUT (W) 1 
S21DUT (W) S21ref (W) . 

(5-2) 

Using this equation reduces the effects of the connectors, 

length of the reference line, and other various non-

idealities of the practical measurement. The quantity 

R f is the characteristic impedance of the straight 
are erence 

section of the reference line. 

b. 50-Q Reference Line Measurement of Circuit Impedance 

A plot of the measured circuit impedance, using Eq. 5-2 

with the data in Figs. 5-10 and 5-11, versus frequency is 

shown in Figs. 5-20 and 5-21. Figure 5-22 is a plot of the 

predicted beam impedance from the impulse source of Fig. 4-7 

and a plot of the SWM circuit impedance. A strong similarity 

exists in the SWM technique to predict the beam impedance in 

the frequencies away from the cavity resonances. The 50-Q 

SWM measures a circuit impedance of the same magnitude and 

shifted in frequency from the estimate of beam impedance. 
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Figure 5-22. A plot of the predicted beam impedance (Q) and 
the 50-Q SWM estimate of beam impedance (Q) versus frequency 
(Hz) . 

c. Use of Non-50-Q Reference Lines 

Sands and Rees originally postulated the use of a small 

center conductor to measure beam impedance. Two non-50-Q 

reference line geometries, one at 84 Q and the other at 

42 Qf were measured to find their effects on the measured 

circuit impedances and compared to the estimated beam 

impedance. The outer diameter structure remained the same as 

shown in Fig. 5-5 while the center conductor geometry was 

changed to accommodate the different impedance reference 

lines. The center conductor tapered sections of Fig. 5-5 

remained linear to match wave impedances from the impedance 

of the reference line to the 50-Q cables from the network 

analyzer. The length of the tapered sections, therefore, 

caused strong reflections for frequencies below -2 GHz. 
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First, the 42-Q reference line was measured. The 

results of the IS211 cavity and reference measurements are 

plotted in Fig. 5-23. Using the relationship in Eq. 5-2, the 

measured circuit impedance is plotted in Fig. 5-24 together 

with the measured circuit impedance from the 50-Q line data 

presented In Fig. 5-11. As expected, the larger center 

conductor of the 42-Q reference line shifts the frequencies 

of the cavity resonances higher, but is essentially the same 

as the 50-Q reference line measurements in frequency regimes 

away from the pillbox and coaxial cavity resonant 

ies. 
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Next, the 84-0 line was measured. This particular 

reference line had stronger reflections than the 42-Q line. 

The 1821 1 reference and cavity stretched wire measurements are 

plotted in Fig. 5-25. The circuit impedance was calculated 

from the 1821 1 measurement using Eq. 5-2 and are plotted in 

Fig. 5-26 together with the circuit impedance measured with 

the 50-Q reference line. As was expected, the cavity mode 

shift due to the presence of the 84-Q reference wire was not 

as pronounced as was observed in the 50-Q case. 

A plot of the measured circuit impedance and predicted 

beam impedance is shown in Fig. 5-27. The measured cavity 

resonant frequency corresponds more closely with the 84-Q 

reference line to the predicted beam impedance resonant 
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10 
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8.+ olun reference line circuit impedance 

Jf \. 

F 5-26. Measured circuit impedances (Q) from the 821 
measurements versus frequency (Hz). 
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Figure 5-27. Plot of predicted beam impedance (0) wi the 
measured circuit impedance (0) using an 84-0 reference line 
versus frequency (Hz). 

frequencies. The 84-0 line, however, did not accurately 

measure the magnitude of the beam impedance at the cavity 

resonance. At the cavity resonance, the 84-0 line was off by 

one order of magnitude from the 50-0 measurement. The 50-0 

line measured the magnitude of the beam impedance accurately 

but shifted the resonant frequencies. 

D. Conclusion 

Stretched Wlre measurements are a complicated 

measurement and great care must be exercised when using this 

technique. Because of the TEM loss mechanism, the 

computations to solve Eq. 1-12 are generally easier for the 

center conductor problem in order to find the scattered waves 

from the pillbox cavity. In practice care must be used to 

align the center conductor in order to not excite high-order 
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¢-dependent cavity modes. 

Use of both 50-Q and high-wave impedance reference lines 

is necessary. At resonance, the lower wave impedance line 

may accurately measure the magnitude of the beam impedance 

but has an inherent error in its center frequency because of 

the presence of the center conductor. The high impedance 

line accurately measures the resonant frequency of cavity 

modes but is off in the magnitude of the impedance. 

The SWM is a measurement of a linear system. Many 

network analyzers have band limitations of -20-26.5 GHz. 

Time-domain measurements, while noisy, may be accurately made 

and may increase the bandwidth of the SWM. 
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VI. Summary and Conclusions 

The design of a stable accelerator requires an 

understanding of the interaction between a charged bunch and 

its environment. The longitudinal beam impedance is a 

measure of the electric field, caused by an ultra­

relativistic impulse of charge, along the trajectory of the 

ultra-relativistic charge. This interaction between an 

ultra-relativistic charge and its environment produces 

electromagnetic fields which are defined as the wakefield. 

The presence of the wakefield is a particular problem faced 

by accelerator scientists. By design, the interaction of 

charged particle beams with their environment is both 

constructive and destructive to the operation of 

accelerators. 

Wakefield accelerator machines have been built which 

directly measure the beam impedance. These machines have 

several inherent problems. They are very expensive and, for 

a variety of reasons, measurements on these machines are 

costly. The machines are not portable and have very specific 

geometry requirements for a general DUT. Finally, wakefield 

accelerator measurements inherently have low signal-to-noise 

ratios. High noise levels often require a change in the DUT 

to achieve an appropriate signal-to-noise ratio. 

The SWM was proposed as a method to estimate the beam 

impedance. The SWM requires the use of a commercially 
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available network analyzer or pUlsing net,.,york. Stretched 

wire measurements are performed by first placing a wire upon 

the designed trajectory of a charged particle bunch. After 

the wire is in place, an impulse of current is excited on the 

wire, and its network parameters are measured. The lumped 

circuit impedance measured by the network analyzer is 

hypothesized to be equal to the longitudinal beam impedance. 

Clearly, the addition of a wire inside the beampipe 

changes the boundary conditions inside the accelerator. 

placement of a wire along the trajectory of the charged 

particle bunch changes the boundary conditions of the system 

such that the wakefield at this position identically 

vanishes. The effectiveness of the SWM technique, however, 

relies upon energy storage in the discontinuity region of the 

beampipe. 

The SWM technique was proposed as a simple measurement 

for finding the effects of the environment on charged 

particle beams. In this dissertation the SWM was shown to 

provide excellent results for frequencies where the field 

intensities are similar between the open beampipe and the 

boundary conditions dictated by the center conductor 

beampipe, i.e., Ez(r~O,z,w)~O. For frequencies where 

Ez(r~O,z,w)~O, the method of excitation, whether it is an 

impulse of current excited on a wire or an ultra-relativistic 

charged particle bunch, is irrelevant. The SWM is not, 



93 

however; a suitable technique to measure the beam impedance 

for frequencies where a strong electric field on axis exists 

In the open beampipe, i.e., Ez(r~O,z,w)*O. A rough estimate 

of the beam impedance may be found for these frequency 

regimes through manipulation of data from stretched wire 

measurements by use of both high-impedance and low-impedance 

reference lines. 

The integral equation of Eq. 1-12 describes the solution 

to the electric and magnetic field distributions for the wire 

and charged particle beam excitations. Using the complex 

Fourier series analysis presented in this dissertation solves 

Eq. 1-12 and correctly estimates the measured beam and 

circuit impedances. This general use of complex Fourier 

series analysis allows one to find circuit models for 

different cavity and beampipe geometries. 

When it is assumed that there are no losses in the 

system, i.e., perfectly conducting boundaries, the calculated 

data for the beam impedance has to be modified slightly for 

frequencies below the first cutoff frequency of the open 

beampipe. This modification technique was pointed out in Ch. 

Iv.C.ii in Figs. 4-3 and 4-4. The adjustment was performed 

using a comparison to two simple coupling circuit models over 

a narrow bandwidth about the resonant frequency of the 

cavity. One circuit model had loss, whereas the other was 

lossless. The propagating modes of the beampipe add an 
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effective loss mechanism and for frequencies above the first 

cutoff frequency it is no longer necessary to modify the 

calculated beam impedance. 

All of the cavity modes, both TM and TEM, were solved 

for in this analysis. A problem in the analysis of 

Gluckstern et al. was related to their not using TEM modes In 

the cavity region. It was shown in an example that the DC 

mode, or magneto-static mode of the cavity, allows the 

stretched wire measurement to converge to the beam impedance 

correctly. 

Use of high-impedance wires to estimate the beam 

impedance may not necessarily always be the best choice for a 

SWM. Reflections in the matching network can become 

significant and even mask the measured circuit impedance. 

The high-impedance reference line does not disturb the 

cavity's resonant frequency significantly when compared with 

the resonant frequency measured with an open beampipe. A 

low-impedance reference line, on the other hand, profoundly 

changes the resonant frequency. The coupling to the cavity 

modes is disturbed by the size of the wire, and the value of 

the measured circuit impedance may not converge to the actual 

beam impedance. 

It was shown in Ch. V that the stretched Wlre 

measurement is a linear measurement. This implies that 

either frequency-domain measurements or time-domain 
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measurements may be made to obtain similar results. 

Frequency-domain measurements with network analyzers may 

possess high signal-to-noise ratios and have a broad dynamic 

range. Additionally, frequency-domain measurements are 

generally easier and more repeatable. On the other hand, 

pulse forming networks are significantly cheaper than network 

analyzers. Therefore, when cost is an issue, time-domain 

measurements are the best alternative. 

Ease of application, cost, and discovery of spurious 

problems make the SWM an essential technique for measuring 

the beam impedance. These spurious problems include 

discontinuities in beampipes or possibly poor connectors at 

the beampipe-cavity interface. The existence of these 

problems requires that great care be exercised in the 

interpretation of stretched wire measurements. 

Investigation of three-dimensional, non-~ symmetric 

sources should provide interesting theoretical, numerical, 

and measurement results for both the longitudinal and 

transverse impedance phenomena. 
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Appendix A 

Derivation of Relationship Between 

Beam Impedance and Wakefield 

Consider an ultra-relativistic particle of charge Q 

traveling through space confined to a straight line (for the 

moment, assume that this direction is the Cartesian unit 

vector 2). The charge Q encounters a wakefield electric 

field E(r,t)=E (r,t)2 caused by another ultra-relativistic z 

particle of charge q, which is exactly t f seconds ahead of 

the charge Q. This electric field caused by the charge q 

does work on the particle Q: 

00 

W( t
f

) =-Q fEz (r=O I z=c (I:-t
f

) II:) dz. 

A change of coordinates z=ct shows 

00 

W( t
f

) =-Qc fEz (r=O I z=c (I: -t
f

) II:) dl:. 

The beam impedance is defined to be the Fourier transformed 

wakefunction w(t) 

z ( w) =7 {w ( t) } . 

The wake function is a scaled function of the wake-work 

function W(t) 



WI '-) 
w(t)= \~ 

Qq 

The beam impedance is therefore 

Switching the order of integration and making the 

substitution that 

dz=-cdt
f 

produces the result 
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Finally, switching the order of integration one last time and 

rearranging terms reveals 
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The second integration is simply the Fourier transform with 

respect to time of the electric field. The final equation is 

z(w) =- :Joo E (r=OI ZI W) e ikz dz. 
q -00 z 

(A-l) 
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Appendix B 

Fourier Transform Definitions and Conventions 

The Fourier transform pair used throughout this 

dissertation is 

00 

A(W) =9"'{a(t) }t= J a(t) e-iwtdt 

and 

Both the spatial Fourier transform and the time Fourier 

transform are used throughout this dissertation. To 

distinguish between these operations, let w be the frequency 

variable for Fourier transforms with respect to the time 

variable, and let q be the frequency variable for Fourier 

transforms with respect to the space variable z. The 

transformed variable in functions is shown subscripted. 
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Appendix C 

Fourier Transform Property 

We want to determine the Fourier transform of 
00 f f(z/) h (Z+Z/) dz l

. Using the definition of the Fourier 

transform in Appendix B, a short derivation follows. 

Starting with 

first interchange the order of integration: 

00 00 

= f f (z I) dz I f e -iqZh (z+ z I) dz. (C-l) 

Using the definition of a shifted Fourier transformed signal, 

-iqz 
7{x(z-z )} = e 0 X(q) 

o Z 

shows that the right-hand integral of Eg. C-l is 

00 

=H(q) f dz1f(Z/) e iqZI
• 

Examination of the integral reduces this to the final result 
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Appendix D 

Beampipe and Cavity Matrix Element Computations 

A. Primary Integration Result 

The following list of integrals is used frequently 

throughout the theoretical and numerical analysis. 

Asymptotics of these expressions are used to estimate the 

truncation error. 

The following two integrals are used In calculating the 

elements of the pipe matrix: 

mtn 

m=n 

B. Explicit Formulae for the Pipe and Cavity Matrices 

Using the previous two integrals and the definitions for 

the pipe kernel given in Eqs. 1-6 and 1-8, the off-diagonal 

(l*p) elements of e are: 
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e = l,p (D-1 ) 

The diagonal (l=p) elements are: 

(D-2) 

The following three integrals are used to calculate the 

elements of the cavity matrix: 

g g . 2mnx . 2pny 

f f 
~-- nny nnx -~--

dy dxe g cos (--) cos (--) e g 
o 0 g g 

n odd 
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n=m=p=O 

2n= Iml = Ipl:;t:o 

The cavity matrix is defined by using these expressions 

and applying the definition of the cavity kernel. Each 

element of the cavity matrix is defined by a sum of like 

terms from both the TM and TEM modes, which will be presented 

accordingly. Before presenting the TM components of 

the following two definitions: 

...... .... ....... , make 

The first contribution is a result of TM modes and adds to 

every element of the E matrix: 

128g1p A 

~ TM l,p = ta ~ -r-----( -( ---)----,1~2 t--_TI ___ m __________ • (D- 3 ) 

k 2-P!- 2n;1 TI ( (2n+l) 2-412) ( (2n+l) 2_4p2) 
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The next contribution, a result of TM modes, adds only to the 

diagonal and anti-diagonal (l=p, l=-p) elements of 

(D-4) 

The next contribution to the cavity matrix comes from the TEM 

modes; it contributes to every element of 

-64g 3 1p 

a 2 n 3 ln( b) e =:E __________ a--r-_____ -r 

1,p n=O ((2n+1)2-4p 2))((2n+1)2-4 1 2)) (2n+1)2-( kg)2) 
n 

(D-5) 

The final TEM contribution to the cavity matrix adds only to 

the diagonal and anti-diagonal elements: 

(1+0 0) 0 111 I I p, , p 

(D-6) 

C. Truncation Error Analysis 

Truncation errors in the plpe and cavity matrices will 

introduce error in the analysis. The truncation errors were 
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estimated by converting the truncated infinite sUITLrnations of 

Eqs. D-l, D-2, D-3, D-4, and D-5 into an integration. This 

technique required several assumptions regarding the point of 

truncation for each of the series based on the geometry of 

Fig 1-9. The following integrals are used to estimate the 

truncation errors. Assume that a 2
, b 2 ,and c 2 are purely real 

quantities. Further assumptions are listed by the individual 

integrals: 

J dx 

x 2 +a 2 

1 -1 ( x) = -tan -
a a 



1 1 

1 

a tan- 1 (~) -btan-1 (-E) 

a 2 -b 2 

106 



107 

x 
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a 2:;tb2:;tC 2 

a 2 
I b 2 

I c 2 >0 
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Appendix E 

Derivation of Circuit Parameters from S21 Measurements 

A. Introduction 

It is desired to find the circuit impedance embedded in 

the scattering parameters measured with a network analyzer. 

While the procedure for finding the impedance from the 

transmission coefficient is only presented, the procedure for 

using the reflection coefficient follows in the same manner. 

In the laboratory it is common to use the transmission 

instead of reflection for practical requirements. The 

reference sections used in stretched wire measurements are 

designed to have low reflection. The relative error in the 

measurement of the reflected energy therefore is higher than 

the relative error in the measurement of transmission. The 

transmission coefficient is specifically analyzed to find the 

circuit impedance in this dissertation since the reflected 

energy is, by design, very small. Theoretically, use of 

either transmission or reflection coefficients to find the 

lumped impedance will produce identical results. 

B. Background Theory 

Imagine the circuit depicted In Fig. E-1, a lumped 

impedance Z with two transmission lines connected to it of 

characteristic impedance Ro' From transmission line theory, 

the voltage and current in region I is 



z 

I II 

Ro x=o Ro 
Figure E-1. Lumped impedance Z with two transmission 1 
of characteristic impedance Ro connected. 

and the voltage and current in region II is 

I(x) =~v+e-i~x. 
R a 

The boundary conditions demand that the current into the 
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impedance is identical to the current out of the impedance: 

This produces a relationship that 

E-1 
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The voltage drop from region I to II divided by the impedance 

z is another expression for the current through the impedance 

Z. Applying the rule of continuity of current reveals the 

relationship 

E-2 

Inserting Eq. E-1 into E-2 reveals the relationship 

2R o 

Z + 2R 
o 

Rearranging this equation shows the dependence of Z on S21: 

Z= 2Ro (1-821 ) 

8 21 

C. Application of Background Theory to SWM 

E-3 

Stretched wire measurements usually require two separate 

measurements. The first measurement is of the reference 

line; the second is of the reference line with the DDT. 

Assume that the impedance mismatches of the reference line 

are independent of the particular DDT. This implies that 

Z =Z -Z. 
DUT ref+DUT ref 



Inserting this relationship into Eqo E-3 reveals 

z = 2Ro (1-s21DUT+ref) 

DUT S 

2Ro (1-s21ref) 

s21ref 21DUT+ref 

Rearranging this equation produces 

2R (s - s ) 
Z = 0 21ref 21DUT+ref 

DUT S S 
21DUT+ref 21ref 

This equation is used throughout Ch. V for finding the 

measured circuit impedance of the pillbox cavity. 
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